Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Inorg Biochem ; 227: 111661, 2022 02.
Article in English | MEDLINE | ID: covidwho-1516298

ABSTRACT

Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.


Subject(s)
Anti-Infective Agents , Drug Resistance/drug effects , Infections/drug therapy , Ionophores , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Humans , Infections/microbiology , Ionophores/chemistry , Ionophores/therapeutic use
4.
Drug Discov Today ; 27(1): 223-233, 2022 01.
Article in English | MEDLINE | ID: covidwho-1363147

ABSTRACT

Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.


Subject(s)
Drug Evaluation, Preclinical , Infections , Organoids , Animals , Cells, Cultured , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Infections/drug therapy , Infections/microbiology , Models, Animal , Organoids/drug effects , Organoids/microbiology , Reproducibility of Results
7.
Medicina (Kaunas) ; 56(11)2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-918231

ABSTRACT

Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.


Subject(s)
Coronavirus Infections , Infections , Pandemics , Pneumonia, Viral , Public Health , Betacoronavirus , Biological Warfare/methods , Biological Warfare/prevention & control , COVID-19 , Coronavirus Infections/economics , Coronavirus Infections/epidemiology , Coronavirus Infections/psychology , Coronavirus Infections/therapy , Humans , Infections/epidemiology , Infections/microbiology , Infections/therapy , Pandemics/economics , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/economics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/psychology , Pneumonia, Viral/therapy , Psychology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL